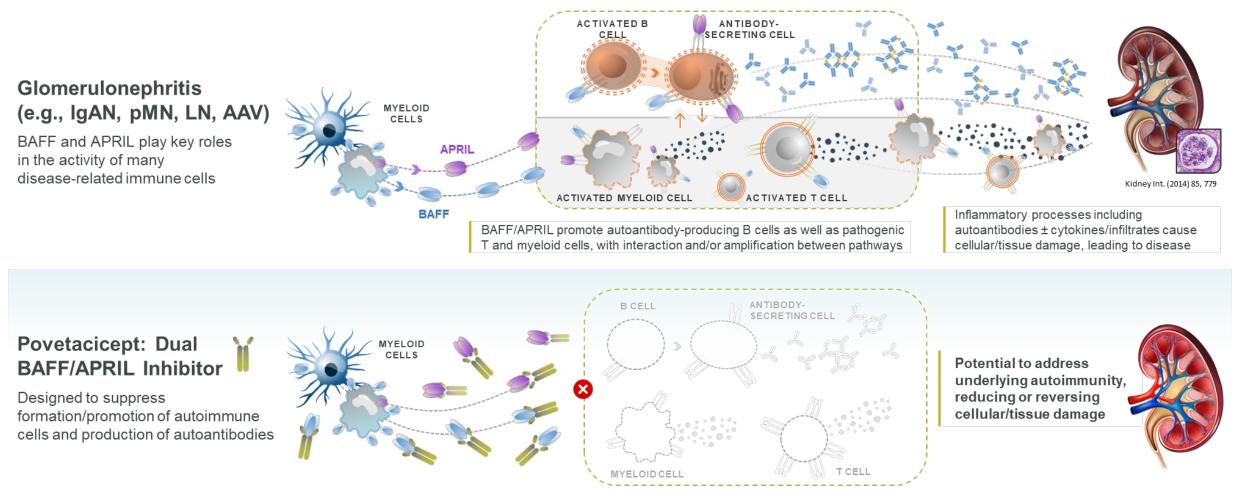
Updated Results from the RUBY-3 Study of Povetacicept, an Enhanced Dual BAFF/APRIL Antagonist, in IgA Nephropathy

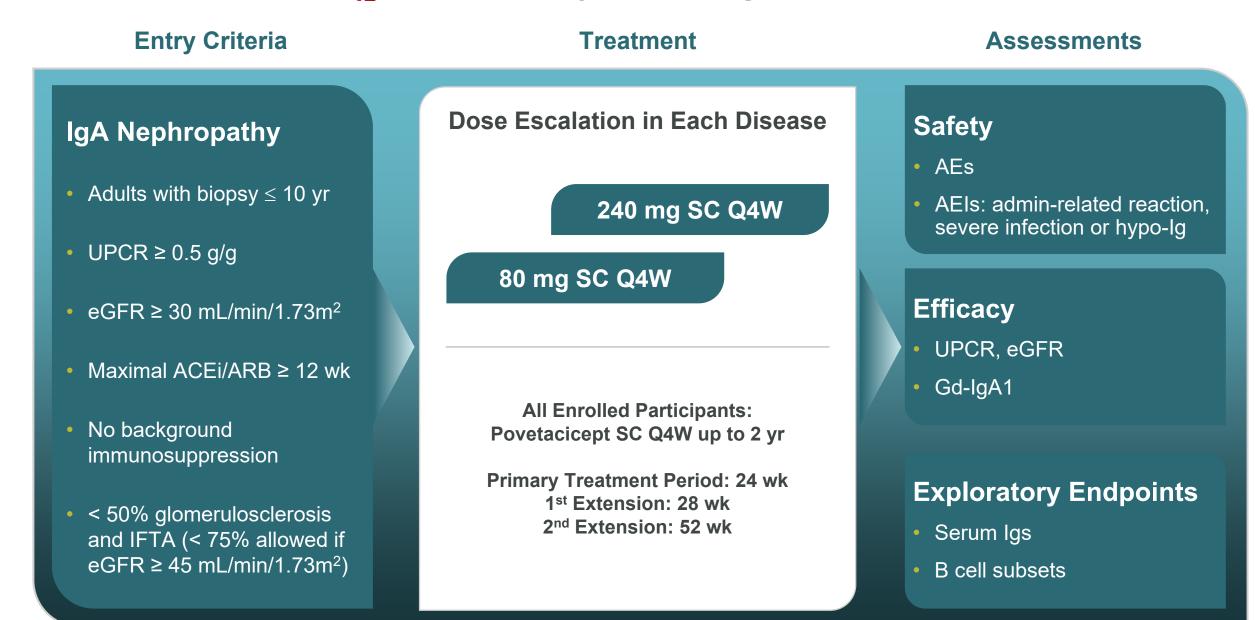
James Tumlin^{1,2}, Sreedhar Mandayam³, Arvind Madan⁴, Frank Cortazar⁵, Sang-Woong Han⁶, Hemant Kulkarni^{7,8}, Jonathan Barratt⁹, Brad Rovin¹⁰, Hong Zhang¹¹, Rupert Davies¹², Amanda Enstrom¹², Heather Thomas¹², Jiahua Li¹², Stanford L. Peng¹², Harmeet Singh¹³


¹NephroNet Clinical Trials Consortium, Atlanta, GA; ²Emory University School of Medicine, Atlanta, GA; ³University of Texas MD Anderson Cancer Center, Houston, TX; ⁴Central Florida Kidney Specialists, Orlando, FL; ⁵New York Nephrology Vasculitis and Glomerular Center, Albany, NY; ⁶Hanyang University Guri Hospital, Gyeonggi-do, South Korea; ⁷Royal Perth Hospital, Perth, Western Australia, Australia; ⁸Armadale Hospital, East Metropolitan Health Services, Perth, Western Australia, Australia; ⁹University of Leicester, Leicester, UK; ¹⁰The Ohio State University, Columbus, OH; ¹¹Peking University First Hospital, Beijing, China; ¹²Alpine Immune Sciences, Inc., Seattle, WA; ¹³Western Nephrology, Arvada, CO

Poster MON-304 Abstract WCN24-AB-762

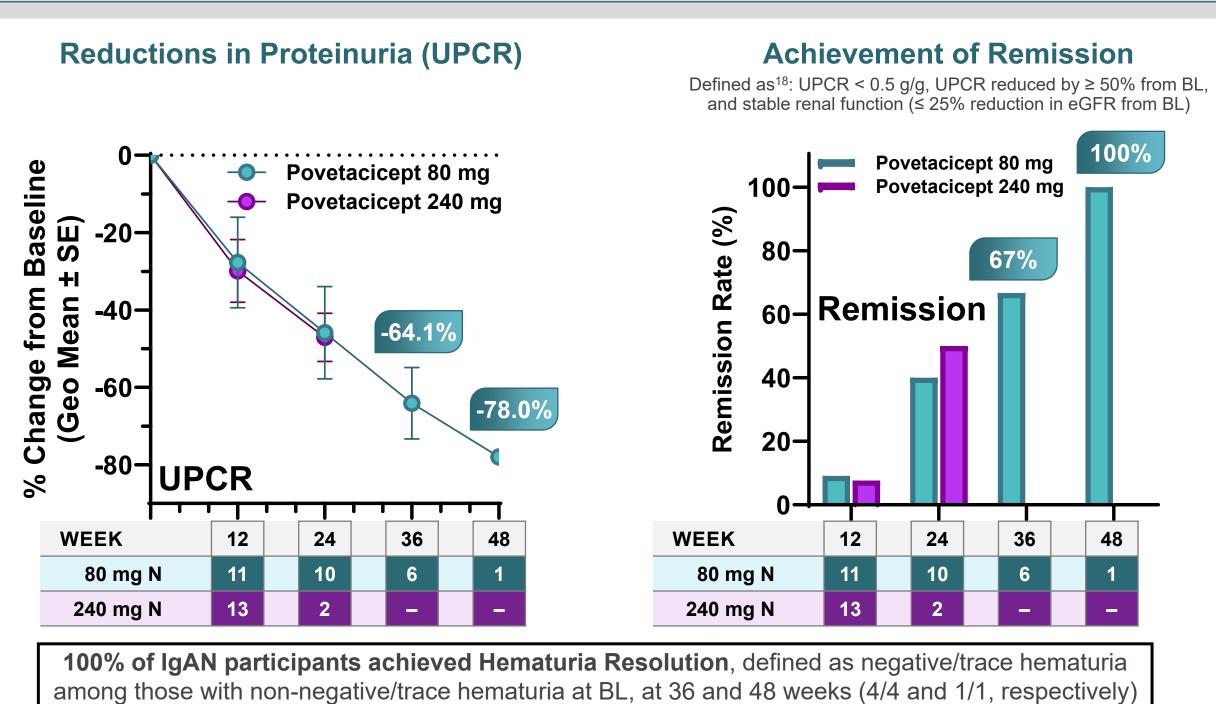
INTRODUCTION

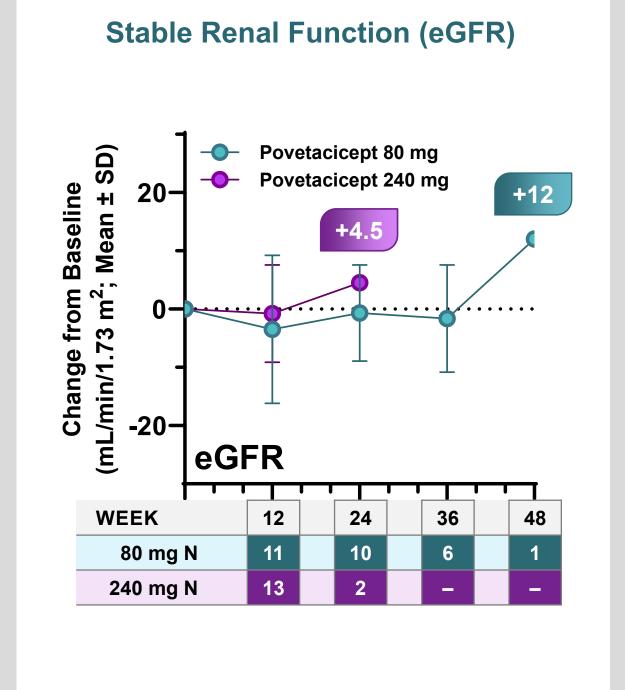
- BAFF and APRIL play critical roles in the activation, differentiation, and/or survival of B cells (particularly antibody-secreting cells) as well as other immune cells including T cells and innate immune cells.^{1,2}
- Inhibition of BAFF and/or APRIL has shown promise in multiple glomerulonephritis conditions,³⁻¹¹ with the potential to modify the underlying pathogenic autoimmunity. Due to their overlapping but non-redundant roles,¹² dual BAFF/APRIL inhibition is likely required for optimal efficacy.
- Povetacicept (ALPN-303) is an Fc fusion of a variant TACI domain engineered for enhanced dual BAFF/APRIL inhibition. ¹³ Povetacicept has demonstrated activity superior to WT TACI-Ig; BAFF-, APRIL-, or FcRn-specific inhibitors; and B-cell depletion in multiple preclinical disease models. ¹³⁻¹⁵
- Povetacicept was well tolerated in healthy volunteers and induced on-target PD effects, including reduced circulating Ig levels (including the IgAN biomarker Gd-IgA1) and antibody-secreting cells.¹⁶
- Initial results with povetacicept 80 mg SC Q4W in participants with IgAN enrolled in the ongoing RUBY-3 study (NCT05732402) showed good tolerability with multiple dosing and promising reductions in UPCR and Gd-IgA1.¹⁷

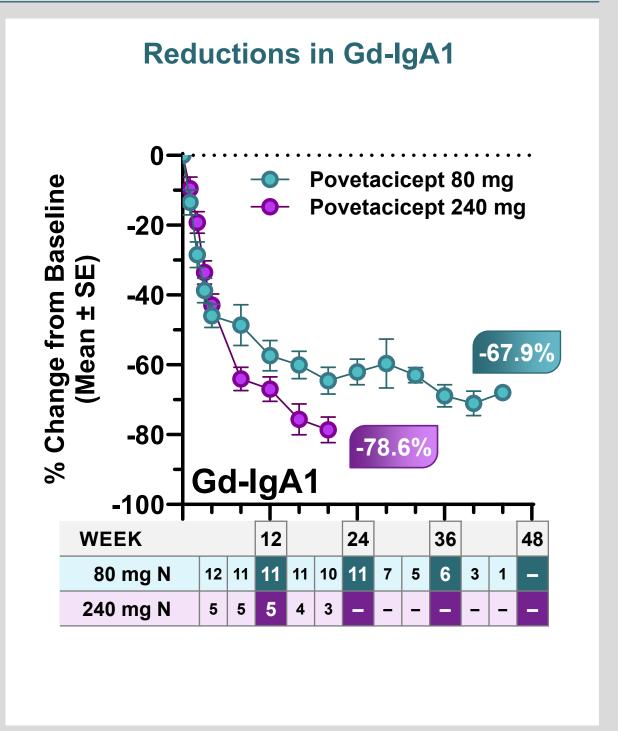

Povetacicept Potently Modulates B Cells and Pathogenic Autoantibodies

STUDY DESIGN & STATUS

• RUBY-3 is an ongoing, first-in-disease, open-label, multiple ascending dose, phase 1b/2a study of povetacicept in adults with glomerulonephritis, including IgAN, pMN, LN, and AAV.


RUBY-3 Study Schema: IgAN Cohorts




- As of 01 Mar 2024, a total of 41 participants with IgAN had enrolled (80 mg, N=12; 240 mg, N=29).
- All data reported are from 01 Mar 2024 except Gd-IgA1 data, which are from 11 Mar 2024.

RESULTS

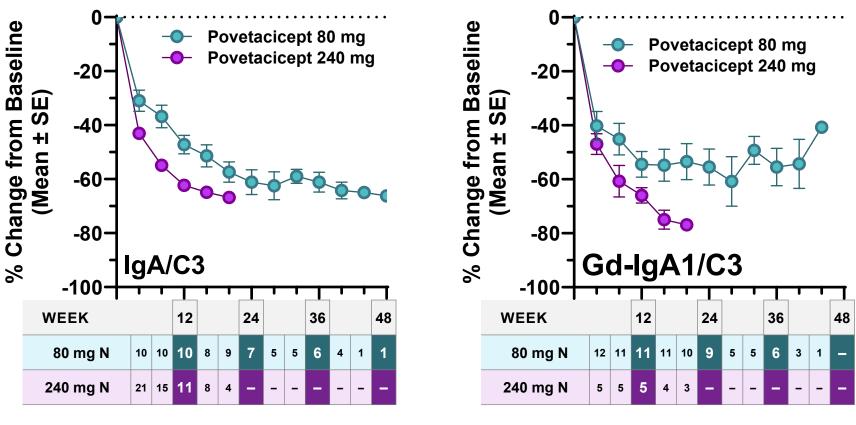
Povetacicept Provides Clinically Meaningful UPCR Reduction, Remission, Hematuria Resolution, and Stable eGFR in IgA Nephropathy, Associated with Reductions in Gd-IgA1

Baseline Characteristics: IgAN

Characteristic (Mean ± SD or N [%])	80 mg SC Q4W N=12	240 mg SC Q4W N=29	
Age, yr	51 ± 12	47 ± 11	
Female / Male	7 (58%) / 5 (42%)	14 (48%) / 15 (52%)	
Caucasian / Asian	7 (58%) / 5 (42%)	13 (45%) / 16 (55%)	
BMI, kg/m²	28 ± 6.5	25 ± 5.4	
Duration of Disease, yr	4.4 ± 6.4	6.1 ± 5.5	
24-hr UPCR, g/g	1.3 ± 0.8	1.2 ± 0.8	
eGFR, mL/min/1.73 m²	70 ± 35	59 ± 28	
Prior Treatments - Corticosteroids - Eculizumab	2 (17%) 1 (8%)	4 (14%) 0	
Current Treatments - SGLT2 Inhibitor - Endothelin Antagonist	2 (17%) 0	11 (38%) 0	
Medical History - Hypertension - Diabetes	7 (58%) 5 (42%)	18 (62%) 4 (14%)	

Safety: Povetacicept Has Been Well Tolerated in IgAN

Adverse Event (AE) Type	80 mg	240 mg	All IgAN
	N=12	N=29	N=41
Treatment-Emergent AEs (n, %) - Gr 1 - Gr 2 - Gr 3 - Gr ≥ 4 - Treatment-related	7 (58%)	10 (34%)	17 (41%)
	5 (42%)	5 (17%)	10 (24%)
	1 (8%)	5 (17%)	6 (15%)
	1 (8%) ^a	0	1 (2%)
	0	0	0
	1 (8%) ^b	1 (3%)°	2 (5%)
AEs of Interest (AEI; n,%) - Administration-related reaction - Severe hypogammaglobulinemia (IgG < 3 g/L) - Malignancy	0	1 (3%) ^d	1 (2%)
	0	0	0
	1 (8%)ª	0	1 (2%)
Any Infection AE (n, %) - Gr 1 - Gr 2 - Gr ≥ 3	2 (17%)	8 (28%)	10 (24%)
	1 (8%)	5 (17%)	6 (15%)
	1 (8%)	3 (10%)	4 (10%)
	0	0	0


^a Gr 3 breast ductal carcinoma in situ, considered treatment unrelated by investigator (medical history of breast lobular carcinoma in situ and melanoma in situ). ^b Gr 2 viral upper respiratory tract infection. ^c Gr 1 viral upper respiratory tract infection and blood IgM decreased in 1 participant. ^d Gr 2 rash.

or i viidi appor reopiiatory tract iiiioottori aria s

ABBREVIATIONS

AAV, antineutrophilic cytoplasmic antibody-associated vasculitis; ACEi, angiotensin-converting enzyme inhibitor; AE, adverse event; AEI, AE of interest; APRIL, a proliferation-inducing ligand; ARB, angiotensin receptor blocker; BAFF, B cell activating factor; BL, baseline; BMI, body mass index; eGFR, estimated glomerular filtration rate; FcRn, neonatal Fc receptor; Gd-IgA1, galactose-deficient IgA1; GN, glomerulonephritis; IFTA, interstitial fibrosis and tubular atrophy; Ig, immunoglobulin; IgAN, IgA nephropathy; LN, lupus nephritis; PD, pharmacodynamics; pMN, primary membranous nephropathy; Q4W, once every 4 weeks; SC, subcutaneous; SGLT2, sodium-glucose cotransporter 2; TACI, transmembrane activator and CAML interactor; UPCR, urine protein to creatinine ratio; WT, wild-type.

Reductions in IgA/C3 and Gd-IgA1/C3 Ratios^a

^a Biomarkers of IgAN disease severity and progression.¹⁹⁻²¹

Other Results

- Reductions in IgA1/C3 were similar to IgA/C3 and Gd-IgA1/C3 (not shown).
- Of note, in preclinical studies, povetacicept achieved a 19-, 7-, and 6-fold greater distribution after dosing than WT TACI-Ig to kidney, lymph node, and ileum, respectively, suggesting that increased tissue distribution may contribute to its clinical activity.¹⁴

Pharmacodynamic Serum Ig Reductions Povetacicept 80 mg Povetacicept 240 mg Povetacicept 80 mg

SUMMARY/CONCLUSIONS

- Povetacicept is well tolerated at both 80 and 240 mg SC Q4W in IgAN.
- Povetacicept treatment continues to be associated with clinically meaningful reductions in disease activity, including a > 60% reduction in UPCR at 9 mo, stable renal function, resolution of hematuria, and remission.
- Povetacicept is also associated with significant reductions in the key disease-related biomarker Gd-lgA1 as well as prognostic lgA/C3 and Gd-lgA1/C3 ratios.
- Further development of povetacicept in GN, particularly IgAN, remains strongly supported. A pivotal trial in IgAN (RAINIER) is in preparation and planned to initiate later this year.

ACKNOWLEDGEMENTS

We thank all participants of the RUBY-3 study and their families, as well as the investigators and staff at study sites, for their contributions to this work.

The RUBY-3 study is sponsored and funded by Alpine Immune Sciences, Inc. Support for graphical illustrations was provided by Jennifer Austin of Biocraft Studio. We also appreciate the contributions from the RUBY-3 study team and other colleagues to the generation of these analyses and the development of this presentation.

REFERENCES

AlpineImmuneSciences.com

1. Samy E. Int Rev Immunol. 2017;36(1):3-19. 2. Benson MJ. J Immunol. 2008;180(6):3655-3659. 3. Anthera 10-K 05Mar2018: Anthera Press Release 28Aug2017. 4. Furie R. N Engl J Med. 2020;383(12):1117-1128. 5. Kooienga L. J Am Soc Nephrol. 2022;33:TH-PO991 [ASN22]. 6. Barratt J. Nephrol Dial Transplant. 2023;38:4337 [ERA23]. 7. Barratt J. Kidney Int Rep. 2022;7(8):1831-1841. 8. Lv J. Kidney Int Rep. 2023;8(3):499-506. 9. Isenberg D. Abs 1291016 [ACR22]. 10. Chen J-W. Int J Rheum Dis. 2023;26(7):1417-1421. 11. Lenert A. Drug Des Devel Ther. 2015;9:333-347. 12. Krumbholz M. Nat Rev Neurol. 2012;8(11):613-623. 13. Evans LS. Arthritis Rheumatol. 2023;75(7):1187-1202. 14. Lewis KE. Abs P104 [SLEuro24]. 15. Lewis KE. Abs 3614 [AAN24]. 16. Dillon SR. Abs ide078 [IlgANN23]. 17. Tumlin JA. J Am Soc Nephrol. 2023;34:TH-PO1125 [ASN23]. 18. Bagchi S. Kidney Int Rep. 2021;6(6):1661-1668. 19. Chen P. Clin J Am Soc Nephrol. 2019;14(10:1458-1465. 20. Mizerska-Wasiak M. Pediatr Nephrol. 2015;30(7):1113-1120. 21. Stefan G. Iran J Kidney Dis. 2020;14(6):470-477.

To obtain a copy of this poster, please scan the QR code.

SCAN ME